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Combinatorial aspects of Bose and Fermi ensembles of "identical particles" are 
reflected in the simplicial category. 

1. INTRODUCTION 

With varying degrees of immediacy, both mathematics and physics 
emanate from, and are expressions of, our perception/conception of the 
world (Bohm, 1965, appendix: "Physics and Perception"). Thus, the 
"special relationship" between the two disciplines is simply a reflection of  
their underlying unity. 

The evidence for unity lies not so much in the banal observation that 
the two subjects share vast tracts of formalism, but in that they share the 
intuitive and informal insights that give rise to these (Bohm, 1976). It is to 
be expected, therefore, conceptual novelties in the  one discipline would 
have a direct bearing on the other. 

Even though quantum theory has brought about drastic changes in our 
conception of the world, and, concomitantly, in the very foundations of  
physics, it has not had as pronounced an impact on the (conceptual) 
foundations of  mathematics (not to be equated with the technical "founda- 
tions of mathematics," the main role of which is not to found, but to 
founder). 

Our research in this direction takes root in set-theoretical consider- 
ations, motivated by the three distinct notions of "ensemble" that underly 
Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics. This 
aspect, viewed from a different angle, is the specific theme of the present 
paper. 
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2. A B S T R A C T  B O S E  E N S E M B L E S  

Consider the notion of a "Bose ensemble" of "identical particles"; 
(Fermi ensembles will not be discussed till much later). Abstracting from 
the physical context, and thinking naively of  the well-known combinatorial  
calculations (with stars and bars; as presented in, say, Feller, 1968, Chap. 
2), a direct comparison with the notion of "set"  suggests itself forcefully. 
For example, a Bose ensemble of  two "identical particles" may be thought 
of---as regards the calculat ions--as a collection of two "indistinguishable 
elements", denoted suggestively by {*, *}, in contradistinction with {a, b}. 

Accepting that set theory arises from the intuitive idea of collections 
of (distinguishable) elements, it seems plausible to ask whether the equally 
intuitive idea of collections of  "indistinguishable elements," abstracted from 
the quantum domain, could serve as a clue for "quantum set theory," where 
some of the aspects hinted at above are inbuilt from the start. 

Of  course, we all know how to model the Bose situation in the usual 
framework, which, at the combinatorial level, amounts to working with sets 
"mod all permutat ions"  (see Section 8); but here we are looking for a 
theory of  (abstract) Bose ensembles that will stand on its own two feet. 

In the present paper  we show the question just ra ised--when suitably 
rephrased--has  a surprisingly simple answer: the distinctive combinatorial 
features associated with Bose ensembles are already displayed in the sim- 
plicial category. 

But this is to anticipate; first we must prepare the ground. 

3. A CURSORY C O M P A R I S O N  WITH TRADITIONAL 
SET T H E O R Y  

To begin with, we would like to discard the idea that somehow a theory 
of (abstract) Bose ensembles may be contrived along the lines of (any one 
version of membership-based) traditional axiomatic set theory. Let us note 
right away that the distinction between the usual and the Bose notions of  
"ensemble"  does not involve--at  least after abstract ion--sophist icated 
metaphysical considerations. As our comparison above illustrates, it can be 
seen very plainly in terms of finite collections of  two sorts of  "elements." 

On the other hand, one of the main concerns- - i f  not the very raison 
d 'etre--of  traditional axiomatic set theory has been to contend with the 
subtleties of  transfinite sets. In subordination to this arduous task, or so it 
would seem to the outsider, finite sets have been adorned with otherwise 
not so compelling manipulations ("building up"  from the empty se t , . . . ) .  
Thus, the notion of set has lost its innocence in traditional set-theoretical 
thought; and the currently favored axiom systems (for example, Takeuti 
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and Zaring, 1970) reflect a measure of estrangement from intuition, even 
where finite sets are concerned (see the criticisms of Lawvere, 1976, Section 
2). Reason enough, for us, to discard this line of attack. 

Still, it is useful to proceed a little further with our comparison, but 
without getting involved in technical details unwarranted by our require- 
ments. Thus, let us recall Cantor 's  definition: "By a 'set '  we mean any 
collection M into a whole of  definite, distinct objects m (which are called 
the 'elements '  of M)  of our perception or our thought" (Dauben, 1979, 
p. 170). Comparing this "classical" notion with the Bose notion of ensemble, 
it is clear that the "elements"  of  the latter, though distinct, are not distin- 
guishable. In a Bose ensemble- -we are tempted to say- -"a l l  elements are 
equal";  or at least, they are "more equal" than their classical counterparts. 

This is not merely a play on words; on the face of  it, the concept of  
"identical particles" does suggest a reexamination of the notions of "iden- 
tity" and "equali ty" (see, for example, Weyl, 1949). Yet, whereas physicists 
were startled by the novelty inherent in the calculations of  Bose and Einstein 
(back in 1916-1917, in the context of  blackbody radiation), most logicians 
concerned with set theory and "foundat ions"  seem to have stayed aloof. 
Thus, to quote a recent source (Wang, 1974, p. 181), "the members [of a 
set] may be objects of  any sort: plants, animals, photons, numbers, functions, 
sets, etc." Granting that in certain contexts we do regard photons as "definite 
objects" (in our calculations, to explain some aspects of  our percept ions) - -a  
view we ourselves have adopted to arrive at abstract Bose ensembles- -we 
must nevertheless think of a collection of n pebbles and a collection of n 
photons in the same state as two different sorts of  collections. Photons 
aggregate differently, and our mathematics ought to reflect this fundamental  
fact at a duly fundamental  level. 

Taking into account the above considerations (which will be further 
clarified in the rest of  this paper) and seeking a ground level formalization 
of Bose ensembles (not out of pure love for formality, but hopefully to 
expose some essential aspects of  the notion in the process) if we were to 
proceed by way of contemplating an axiomatization along the lines of  
traditional set theory, we would be led astray. Thinking naively, if we took 
e as primary, it seems clear we will not get to the heart of  the matter since 
both sorts of  "elements"  are quite comfortably members of  their respective 
ensembles in a uniform manne r - -how would e tell them apart? Or, are we 
to transfer the problem outside set theory proper,  and devise formal 
languages with various notions of  "equali ty"? It would appear  a perplexing 
task, to say the least, to "dissect" the notion of equality. 3 Intuition would 
be sacrificed, and we are back to our original objection. 

3Nevertheless, see Parker-Rhodes, 1981. 
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There is, however, an entirely different approach to set theory, and to 
our quest, which is much closer to our intuition, and we now turn our 
attention to it; [in defiance of Cantor's warning: "My theory stands as firm 
as a rock; every arrow directed against it will quickly return to its archer" 
(Dauben, 1979, p. 298)]. 

4. CATEGORICAL SET THEORY 

The elementary theory of the category of  sets (Lawvere, 1964) was the 
first formalization of set theory to depart radically from the traditional 
stance. Relegating elements and membership to a secondary role, and 
elevating mappings and composition to a primary one, the axioms described 
the category of sets, in all fidelity to our informal understanding and use 
of it in usual mathematical practice. 

Crucial simplifying insights, and an eye for the assimilation of substan- 
tial, though seemingly unrelated, developments in geometry and logic into 
a unified conceptual framework, inspired Lawvere and Tierney to modify 
Lawvere's 1964 formulation to a much more versatile list of axioms, the 
elementary theory of topoi. Consequently, the importance of Lawvere's 
pioneering 1964 work is now viewed in a historical perspective: it extricated 
our thinking from the awesome hold of tradition, established the respectabil- 
ity of the "purified" notion of abstract sets (to be discussed), and, of  course, 
helped pave the way for elementary topos theory. 

Given a modicum of knowledge of the language and constructs of 
category theory, the modified axioms are deceptively easy to state: a topos 
is a cartesian closed category which has a subobject classifier (see Johnstone, 
1977; Goldblatt, 1979; MacLane, 1975, gives a short introductory account). 
On one level, just like the 1964 precursor, the axioms express (succinctly, 
in terms of interrelated pairs of adjoint functors) some of our usual ideas 
about " the"  category of sets and mappings; and are presented in this 
plausible manner by Lawvere (1976, 1973). But on a deeper level, they do 
much more: they provide an effective basis for the description and study 
of not only " the"  category of (constant) sets (a topos among others), but 
also of more refined categories (topoi) of "continuously variable sets," 
which are now seen to pervade mathematics and logic (Lawvere, 1975, 
1976; Tierney, 1972). 

Elementary topos theory, or more suggestively, the theory of con- 
tinuously variable sets, generalizes the very notion of (the category of 
constant) sets in an intuitive and conceptual manner, and--recalling our 
remarks in the introduction--will  no doubt come to bear on theoretical 
physics (see Lawvere, 1980; Kock, 1981). 
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It is not within the scope of the present work to survey these prospects, 
or to discuss the conceptual advances incorporated in elementary topos 
theory. In fact, to deal with Bose ensembles, we shall diverge from set 
theory at the combinatorial  level of  (the category of) finite sets and mappings.  
Thus, in the furtherance of our quest we shall need no more than an informal 
acquaintance with the spirit of  the categorical approach  to set theory, and 
we shall avail ourselves of  nothing beyond the simplest notions of  category 
theory (readily accessible in Mac Lane, 1971). 

Instead, we shall require a brief informal probe into the physical origins 
of  the notion of ("pure ,"  abstract) sets and mappings,  and their basic role 
in mathematics,  touching upon those aspects that are strictly relevant to 
our argument. Thus, the plain discussion that follows simply hopes to clarify 
and promote  the way we shall be looking at things; it aspires to no more 
than that, and clearly has no pretensions to historical accuracy either. 

5. THE CALCULATORY ROLE OF T H E  CATEGORY OF 
ABSTRACT SETS 

The commonplace  notion of a finite collection of like "things" seen, 
put (set), or imagined together (ensemble) is a basic one in our thinking, 
and is amply reflected in our everyday language. 4 The mathematical  notion 
of a "pure ,"  abstract set ultimately emanates from this primitive idea of a 
collection, by a process of  abstraction (and extrapolation, to infinite sets, 
etc.). 

A crucial step toward abstraction was implicitly taken (we conjecture) 
back in antiquity, when, probably in early trade or accounting, divers 
collections of  like "things" were uniformly represented by, say, collections 
of  (as many) pebbles-- i rrespect ive of  the specific nature of  the members 
of  the various collections, and the sundry differences between the members  
within a given collection; since a further step of abs t rac t ion-- f rom pebbles 
to "e lements" - - leads  us to essentially the "pure"  notion of (constant) 
abstract set: "An abstract set X has elements each of which has no internal 
structure whatsoeverS; X has no internal s tructure except for the equality 

4The collective nouns of our every day vocabulary rarely refer to arbitrary collections of 
irregular "things"; rather, they mostly denote uniform collections of like or similar "things." 
For example, pack (of wolves), flock (of sheep), crowd (of people) etc. [Incidentally, this 
suggests our common notion of a collection relates to that of a (finite) discrete cat~egory.] 

5Thus, all the elements in an abstract set are exactly alike, completely uniform. Indeed, the 
imposition of absolute uniformity--brought about by ignoring all irrelevant dissimilarities--is 
part and parcel of the process of abstraction from actual "things" to abstract "elements." 
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and inequality of pairs of elements, and has no external properties save its 
card ina l i ty ; . . . "  (Lawvere, 1976, p. 119). 

Though some concrete primitive precursor or other of the "modern"  
concept of abstract set was at hand very early on, the notion of  general 
mapping (as against one-to-one correspondence) was no t - -no t  even 
implicitly--since the need for it did not arise. In commercial accounting 
one needed to count, and the early calculations using "sets" of pebbles 
were limited to "arithmetic" manipulations; for example, adding and 
deducting pebbles, to mirror income and outgo. Consequently, it was the 
concept of number that evolved soon after by a further step of abstraction 
from sets (which in effect impeded the discovery of the notion of mappings) ; 
and "to calculate" came to signify "to compute" with numbers. But in 
Latin, "calculus" means "little stone" or "pebble," and accordingly "to 
calculate" would mean "to move or to manipulate pebbles"-- in  accordance 
with the requirements at hand. 

The requirements of "modern"  mathematics have, of course, brought 
into prominence general calculations with sets (and better still, variable 
sets) which find concrete expression in (or through) the notion of mapping- -  
and composition. It would seem, however, some notion of mapping (without 
any idea of composition) was implicit in simple combinatorial calculations, 
underlying the computation of discrete probabilities, sometime before the 
"modern"  era. To be sure, the practice was to speak of, say, balls and cells, 
and to ask for the number of ways of placing m balls in n cells; but this 
must have entailed the calculation of all mappings between the given 
collections. 

The fundamental importance of abstract sets to mathematics rests in 
that they provide the means to contemplate mappings, and, thereby, to 
calculate. "The only possible use of abstract sets T is the possibility of 
indexing or parametrizing things by the elements of T in the hope of 
clarifying actual relations between the things by means of calculations on 
mappings introduced to mirror the re la t ions . . . "  (Lawvere, 1976, p. 120, 
121). The categorical approach to set theory gives immediate prominence 
to the mappings, the basic (ground level) activity of calculating, which, 
after all, is the carrier of mathematical meaning. In primitive vernacular 
the palpability of this observation comes out in trenchant fashion: mathe- 
matical meaning is displayed by the active movements--or ,  if you prefer, 
the mental assignments--that the pebbles undergo; not the dead lumps of 
stone in themselves. 

Now, following one basic step of calculation (i.e., mapping) by another, 
we conceive composition, and-- to  cut it shor t - - " the"  category of abstract 
sets and mappings ,9~ or, going strictly by our mundane argument, the 
category of finite abstract sets and mappings [1 
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Using 5 e as a base, we set out, and with more finesse, we set up (using 
standard methods of category/ topos theory) more complex calculations ; in 
the hope of  obtaining "concrete"  representations of more refined (less 
abstract) conceptual categories, that arise in mathematical  practice, in the 
course of  our ongoing efforts to render explicit various aspects of  our 
percept ion/concept ion of the world. 

Thus, we wish to promote the view (to be clarified further in the sequel) 
that the category ~- - -and  with obvious limitations, [ ] - -serves  as a rudimen- 
tary "abstract  space," where we perform, or imagine to perform, our ground 
level, "concrete"  calculations. 

6. A C A T E G O R Y  OF B O S E  ENSEMBLES? 

Reviewing our comparison of Bose ensembles and classical ensembles 
( ~  finite abstract sets), it is by now fairly clear that our earlier discussion 
in Sections 1 and 2--suggesting a description of {*, *} versus {a, b} at face 
va lue- -was  somewhat  superficial, since it neglected the essential question: 
how do we thereby calculate? Bringing in this essential component,  in the 
classical case we arrive at the category [ of  finite sets and mappings. The 
specific aim of this paper,  accordingly rephrased, is to seek out the "parallel"  
Bose category B. 

Thus, we must look for morphisms and composit ion; and in this quest 
we are guided by the well-known calculations with stars and bars (Feller; 
or any introductory text on quantum physics) used to compute the correct 
probabilities for Bose-Einstein statistics. But alas, it is not even clear what 
the objects of  this projected Bose category B are. As domain, they are 
apparently Bose ensembles (with "elements"  the indistinguishable stars); 
while as codomain,  they are apparently classical ensembles (with "elements"  
the distinguishable cells, between the ba r s ) - - and  the trouble is the objects 
must fulfil both roles. 

This, however, is only an apparent  impasse; having to do with the 
standard manner  the subject of Bose ensembles is presented, and to some 
extent, the informal intuitive explanation, "identical particles", the stars 
are meant to suggest. To see this, we must pay a little more attention to the 
physical origins of [] itself. 

7. CLASSICAL PARTICLES AND T H E  CATEGORY OF 
FINITE SETS 

From our earlier discussion--the simile of  pebbles and elements-- i t  is 
clear that the category of  finite sets [] is abstracted from what we would 
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call a classical domain of experience, where by "classical" we fully intend 
the physical connotations. 

More emphatically, motivated by Bohm's views on physics and percep- 
tion (Bohm, 1965, appendix), we claim that very rudimentary aspects of 
the motion of classical particles ( = idealized pebbles = elements ~ points) 
in ordinary space are also reflected in U1, through the mappings, in the 
following sense. 

Just as the notion of "elements" arises from the idea of  "pebbles" in 
its most abstract form, by shedding considerations of size, mass, distinctive 
features, etc., but retaining some idea of their individual positions; and just 
as the notion of (finite) set arises from the idea of  their "togetherness" in 
its most abstract form, by shedding considerations of topology, structure, 
etc., but retaining some idea of their being in the same location; so the 
notion of  mapping emanates from the idea of  their collective motion or 
transportation in space, by shedding considerations of continuity, dynamics, 
etc., but still retaining, in abstract form, vestiges of  their individual trajec- 
tories. (After all, in mathematical practice we often do talk of a mapping 
taking this element to that element, or even, of this element going to that.) 

Though this spatial view of [] deserves further elaboration, we feel it 
is best to illustrate what we are driving at by means of a simple example, 
which will also serve to clarify aspects of Bose ensembles and statistics. Let 
us consider a fast revolving target disk divided into six equal sections, 
labelled 0, 1, . . . ,  5, and two air guns aimed to hit it. We fire the two guns, 
staggering the shots a little to allow the disk to revolve, so as to get " random" 
or haphazard hits. (We could consider the throwing of two dice, but our 
example will bring out the points we wish to illustrate more directly.) 

We envisage 36 "basic possibilities," and on the assumption that they 
are equally probable, we arrive at the probability of a specified outcome 
by counting the number of  ways in which it may come about, and dividing 
by the total number of basic possibilities. Thus, the probability of  obtaining 
a double 5 equals 1/36; while the probability of obtaining a 4 and a 5 
equals 2/36. 

A crude assessment of  the physical situation, but nevertheless a funda- 
mental one; more detailed consideration may prompt us to modify the 
assumption of"equal ly  probable," but we are very relucant to relinquish the 
assumption of  36 basic possibilities. How does this number dawn on us? 

A simple and intuitive way to view the above experimental setup-- in 
abstract form, idealized to the bare essentials for the purposes of  working 
out the probabilities--is to represent the two guns, or nozzles, by the 
elements of  a set 2, and the six sections of  the target by the elements of  a 
set 6. Each trial of the experiment is then represented by a mapping 2 ~ 6. 
We can, of  course, exhibit such a mapping by drawing a little diagram 
showing the two sets with their elements, and the assignments making up 
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the mapping, explicitly. We suggest that this, in turn, is a rudimentary 
pictorial representation of the experiment, showing the separate trajectories 
of the two pellets, in idealized fashion (i.e., mod details which are judged 
irrelevant for the calculations intended). We are now in a position to carry 
out our calculations; we note that there a r e  6 2 ( ~ 6 (1+1) ~ 61 x 61 ~ 6 • 6 ~ 36) 
different mappings from 2 to 6--standing for the basic possibilities--and 
that only one of these will bring about the outcome double 5, while two of  
these will bring about the outcome 4 and 5; whence our assessment of  the 
corresponding probabilities. 

The point of detailing these banalities is to remind ourselves that the 
above considerations, leading to 36 basic possibilities, amount to a theory- -  
albeit a very primitive one. In essence, this theory is based on an insight 
arising from our intuitive perception of the experiment: that the given 
experiment is similar, in certain relevant aspects, to a more familiar experi- 
ment; namely, that of "calculating" mappings from a collection of two 
pebbles to a collection of six pebbles. 

Now, we would like to emphasize that the question of whether the 
pellets (and, for the matter, the representing pebbles) are identical or not 
is not a crucial factor in the experimental arrangements. For all we care, 
the pellets--taken from one manufacturer's box- -could  be all exactly alike, 
identical to the hilt. The possibility of actually (i.e., physically) labeling the 
pellets, is incidental to the workings of the experiment. Of course, it could 
be argued that in principle we could mark the pellets with little scratches, 
to distinguish between the two; but say the pellets melt on impact with the 
target. Right, we could arrange for the pellets to be cast in two different 
alloys; but say the pellets go clean through the target, leaving two little 
holes, which is quite enough to determine the outcomes we are interested 
in. Whatever these incidental arrangements, we would still work out our 
probabilities in the same way. In other words, if we actually use pellets 
similar in every detail, the experimental results are not affected. 

The crucial observation is that the given experiment involves two 
"classical particles" which have an autonomous existence throughout their 
independent flight to the target, in "classical" space. And while in our 
primitive theory we have not made detailed stipulations concerning the 
experimental setup, or "classical" space, we have--even at the very abstract 
level of  considering just mappings from 2 to 6-- included enough features 
to enable us to arrive at the "correct" probabilities. 

8. IDENTICAL PARTICLES AND THE SIMPLICIAL CATEGORY 

Instead of  classical particles, let us now consider "identical particles" 
satisfying Bose-Einstein statistics. For the sake of comparison with the 
previous example, consider a hypothetical "experiment," with two 
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"sources," and six target "states", labeled 0, 1 , . . . ,  5. Two identical 
bosons - -one  from each source--will  end up in the various states available; 
(it would not be amiss to think roughly on the lines of  the informal discussion 
in Feynman, 1965, Section 4-2; but here we wish to proceed in a com- 
binatorial manner,  talking of "basic possibilities," rather than "probabil i ty 
amplitudes," etc.). 

According to the well-known combinatorial calculations (Feller), the 
probability for both bosons to get into state 5 equals 1/21 ; the probability 
for the bosons to get into states 4 and 5 equals, again, 1/21. A situation 
drastically different from the classical: 21 basic possibilities, as against 36, 
and only one of these brings about the outcome 4 and 5. 

Going by the usually offered informal explanat ions--which are as much 
part of a theory as the formal calculat ions--the standard assessment of  the 
difference between the classical and the Bose situations is indicated by the 
slogan "identical particles"; whence the star notation {*, *} for the bosons 
(which stood in our way in Section 5). "The problem of identity which we 
are facing here has for thousands of years been one of the most baffling in 
metaphysical speculations" (Jauch, 1968, Section 15-3), which quantum 
theory seems to have "brought  down from a purely speculative level to the 
empirical level." We are asked, it would seem (for instance, Jauch, 1968, 
p. 276; Weyl, 1949), to contemplate a profound difference between two 
particles that are merely similar but not "identical," and two particles that 
are "identical," and not merely similar in every respect. We suggest t h a t  
the informal explanation "identical particles" is a convenient reminder of  
the standard maneuvres (of symmetrization in the Bose case, and antisym- 
metrization in the Fermi case) to be undertaken to ultimately get hold of  
the correct (amplitudes, hence) probabilities ; but otherwise it is not all that 
elucidating. 

As in the classical situation, let us start off by representing the two 
sources by the elements of  a set 2, and the six target states by the elements 
of a set 6. The "Bose experiment," i.e., the process of two bosons getting 
from the sources to the states, is then represented schematically by a 
morphism or arrow 2 ~ 6, which must be defined in such a way as to get 
21 arrows from 2 to 6, as against 36--so the arrows do not stand for arbitrary 
mappings,  which ought to be clear on physical grounds in any case. In our 
quest for an explicit definition of these arrows, let us be guided by our 
intuitive understanding of the difference between the two physical situations 
(also touched upon by Jauch, 1968, p. 276, second and third paragraphs).  
In the Bose case, we talk of  two "particles" mainly in a metaphorical  sense; 
in the process of  getting from the sources to the states, these "part icles" 
do not have an autonomous existence, independent of each other; nor, of  
course, explicit trajectories in "classical" space. At the rarified level of the 
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very rudimentary mathematics we have intentionally restricted ourselves, 
we must somewhow express, at least, the interinvolvement or interdepen- 
dence of the two bosons, during their progress from the sources to the states. 

The way to give mathematical  expression, at the ground level, to this 
idea that the bosons proceed "f rom 2 to 6" in a more interdependent or 
orderly manner  than that expressed by an arbitrary mapping, is to consider 
the sets 2 and 6 as linearly ordered, and to ask for 2 ~  6 to be an order- 
preserving mapping: (as shown in the appendix) there are precisely 21 such 
morphisms from 2 to 6 - -as  required--which can be taken to stand for the 
basic possibilities in our calculations relating to the Bose "experiment ."  

This suggests that as far as our calculations are concerned the simplicial 
category A (see Appendix) relates to the Bose situation in much the same 
way as the category of finite sets [] relates to the classical situation. 

To see how our approach compares with the standard view of things, 
let us look a little more closely at the usual explanation in terms of" ident ical  
particles," and what it leads to. (In what follows we use rn and n instead 
of 2 and 6, and we take for granted our notations in the Appendix.) Referring 
to the Bose situation, we would say that the m bosons cannot be individually 
named or distinguished; by which we in effect mean they are completely 
interchangeable in our calculations. Hence, if we are to work with a set m, 
we must insure "invariance under all permutations on the set m." In other 
words, to arrive at B(m, n ) - - tha t  is, the collection of "basic possibilities" 
in the Bose situation [as against ~](m, n) in the classical]--we would start 
off with � 9  n) and let the symmetric group Sm of permutations on the 
domain m act on � 9  n), on the left, in the obvious manner. 6 We would 
then propose that the orbit set D(m, n)/Sm be taken as B(rn, n). After all, 
this is the underlying combinatorial summary of the initial steps we go 
through when symmetrizing in the linear situation (see, for example, Jauch, 
1968, Sections 15-4, 15-5). 

These maneuvres do, of  course, produce correct results; but from our 
combinatorial point of  view, they are arrived at via a diversion. For we 
assert that there is a bijection �9  n)/Sm ~ A(m, n) between the collection 
of orbits on the left, and the collection of morphisms on the right; namely: 
if ( f )  denotes the orbit of mapping f in D(m, n), under the action of Sin, 
there is precisely one f '  in ( f )  which preserves order, 7 and the bijection is 
given by (f)~-~f'.  Thus, at the combinatorial level, when we start off with 
the "classical" [](rn, n) and go through the usual procedure of  identifications 
brought about  by symmetrization, we arrive at what amounts to A(m, n). 

6The action Sm x ~ (m,  n ) ~  S~(m, n) is given by (or, f ) ~  or.f, where o--f denotes the composite 
of permutation cr followed by mapping f. 

7We have implicitly endowed sets m and n with linear order; in this regard see our comments 
in the Appendix. 



418 Khatcherian 

As a result of  this diversion, in Section 6 we were at a loss as to what 
the objects of  the projected Bose category were. Moreover, the obvious 
compositions 

A(m, n) •  A(m,p) 

have been overlooked; since it takes some effort to see in terms of 

[5](m, n)/ Sm • Vfl(n, p)/ S, -.~ f3(m, p)/ S,,, 

Thus, the category of abstract Bose ensembles B, which eluded us in Section 
6, turns out to be nothing but the simplicial category A. Here, rudimentary, 
yet basic, combinatorial  features underlying Bose-Einstein statistics are 
inbuilt f rom the start. Furthermore, primitive aspects of" ident ical  particles" 
satisfying Fermi-Dirac  statistics can also be discussed in terms of A - - t o  be 
precise, in terms of the monomorphisms in A 8. Thus, it appears, a small 
fragment of  the combinatorial,  discrete facet of  quantum theory is captured 
in A. 

In view of  the protean aspects of  the simplicial category (summarized 
in MacLane,  1971, p. 176), the above observation suggests new lines of  
research, which will be discussed elsewhere. 

APPENDIX 

First we recall some familiar definitions, in order to establish notation. 
We define the simplicial category A (in accordance with MacLane, 1971, 
Chap. 7) as follows. We take as objects of  A all finite linearly ordered sets, 
including the empty or initial 0. We denote the objects of  A by 0, 1, 2 , . . . ,  m, 
etc.; where m stands for the linearly ordered set 0-< 1 -< 2-<. �9 �9 -< m - I with 
m elements. Though we use the same typescript for the objects of  A and 
the elements within the various objects of  A, they are quite distinct and 
must not be confused; (to boot, no nestings is implied by our notational 
abuse). The morphisms of  A are defined as the order-preserving mappings 
rn "t-~ n (i<-j in m implies if<-jf in n). 

Alternatively, we could view each finite linearly ordered set as itself a 
category (using-~instead of-<)  as follows: 

2 3 

0 0 7 1  0 ~ 1 

1 

1 2 3 4 and so on 
8The monomorphisms in A are simply the order-preserving injective mappings. 
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in which case each order-preserving mapping m --~ n would be referred to 
as as functor, from category m to category n, and A would be described as 
the category of  these finite categories--which is just another (better) way 
of putting the first definition. 

The above diagrams are also suggestive of  the name "simplicial," and 
yet another familiar presentation of Ax, as the category (with'0bjects the 
finite ordinals) generated by the "face" and "degeneracy" arrows 

8 7 : n ~ n + l  ( i = 0 , .  . . ,  n), o - 7 : n + l ~ n  ( j = 0 , . . . , n - 1 )  

subject to the usual relations (see MacLane, 1971, p. 173). 
The category [] has as objects all finite (abstract) sets; and as morph- 

isms, all mappings rn .L~ n. The objects of  [] are also denoted by 0 (empty 
set), 1 , 2 , . . . ,  m, etc.; where now m stands for the set {0, 1 , 2 , . . . ,  m - l }  
with m elements. Again, the elements of m are here denoted by 0, 1 , . . . ,  
purely as a matter of  notational convenience--we definitely do not mean 
to suggest that our sets are nested within each other, or anything like that. 
(Any suggestion of this kind is, of  course, dismissed by the very definition 
of an abstract set.) 

On the other hand, rn={0, 1 , 2 , . . . ,  m - I }  does suggest an implicit 
linear order on m--which  brings us to the point raised in footnote 7, 
regarding the bijection � 9  n)/S,,, =Ax(m, n) (in Section 8, toward the 
end). When specifying this bijection, we are, strictly speaking, thinking not 
quite in terms of  [], but in terms of category " ~ "  defined as follows. The 
objects of  " D "  are taken to be all finite linearly ordered sets (as in Ax), but 
the morphisms of  " [ ] "  are still defined to be arbitrary mappings, as in ~ .  
The categories " ~ "  and [] are clearly equivalent, and we choose to gloss 
over the distinction between the two. Now, corresponding to the well-known 

I[](m, n)l = n m 

[where D(m, n) denotes, as usual, the collection of all morphisms from 
object rn to object n in category [~] we have 

lAx(m, n)l = (m + n -  1 ) ! / m ! ( n -  1)t 

[in particular, lAx(0, n)[= 1 for every n in Ax; IAx(m, 0)l=0 if m ~ 0 ;  and 
lAx(2, 6)1 -- 21, as asserted in Section 8], which follows from the observation 
that what goes under the description of distinguishable distribution of  m 
indistinguishable balls in n cells (Feller, 1968, Chapt. 2, Section 5) can be 
viewed simply as a morphism m ~ n in Ax. 

To see this, recall the usual manner in which we work out the number 

IB(m, n)l = ( m +  n -  1 ) ! / m ! ( n -  1)! 
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of all "distinguishable distributions of m indistinguishable balls in n cells," 
in the context of Bose-Einstein statistics. For example, 

/ * * * / * * /  / * * /  / * /  
t 

is one possible "distribution," with m = 8 and n = 6, where we use seven 
bars to represent the six cells by the spaces in between. 

Keeping the two outer bars fixed, we note that each shuffle 9 of the m 
stars and the ( n -  1) inner bars amounts to a "distinguishable distribution" 
in •(m, n) - -whence  the number (re+n-1)!/mI(n-1)!. 

We now indicate a bijection B(m, n) ~ &(m, n). 
Under this bijection, the distribution in •(8, 6) given above corresponds 

to the morphism 

0 1 2 3 4 5 6 7 

~ 1  2 ~ 3  4 ~ / l n  A(8, 6) 

Here we have introduced an explicit domain 8 and an explicit codomain 
6, whose elements represent the "cells." We wish to think of each distribution 
as the end result of some mapping from 8 to 6; the positions of the stars 
giving some indication as to what assignments have taken place. But the 
requirement that the balls or stars be "indistinguishable" in effect discounts 
precisely those mappings from 8 to 6 which do not preserve order. In other 
words, a mapping f :  8-0 6 which does not preserve order cannot be distin- 
guished from the (unique) order-preserving mapping f ' :  8 ~ 6 which hits 
the same elements in 6, the same number of times, as f For, in this context, 
the requirement that the stars be considered "indistinguishable" translates 
to the instruction that for each mapping f :  8 ~ 6 we are to ignore which 
particular element of  the domain is assigned to a given "cell" in the 
codomain. So we might as well suppose that the first three stars (in cell 0, 
at the extreme left) come from the first three elements (0, 1, 2) in 8; the 
next two stars (in cell 1) from the elements 3, 4 in 8, and so on. Thus we 
obtain an order preserving mapping 8 ~ 6, as shown, which conveys the 
same information as the distribution 

/ * * * / * * /  / * * /  / * /  

This informal argument allows us to view each distribution in B(m, n) as 
an order-preserving mapping--i.e.,  a morphism in A(m, n ) - - and  the other 

9Our use of "shuffle'~is in agreement with MacLane's definition (see Mac Lane, 1975b, p. 243). 
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way around. Hence the bijection B(m, n)~A(m, n) and IN(m, n)l = 
(m + n - 1) ! /m !(n - 1) t. (For a more formal specification of this bijection, 
see Khatcherian, 1983, Chaps. 14, 15.) 
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